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IMPERFECTION SENSITIVITY
OF OPTIMUM STRUCTURAL DESIGNS
FOR A MARS ENTRY CAPSULE
by
Gerald A. Cohen

Structures Research Associates, Newport Beach, California
SUMMARY

The imperfection sensitivity of the buckling modes of six optimized
Mars entry capsule configurations has been analytically evaluated. The
capsule configurations treated (120° and 140° blunted comes and a 60°
spherical dish of sandwich construction, and 120° blunted cone and 0A.833
and OA.65 tension shells of ring-stiffened construction) were obtained in
previous studies. In addition, the buckling modes of two nonoptimum 120°
truncated cones, one of sandwich and the other of ring-stiffened construc-
tion, also previously studied, have been evaluated. The analysis is based
on nonlinear Novozhilov-type shell and ring theory and was performed with
the aid of an initial postbuckling digital computer program developed for
general ring-stiffened shells of revolution. In each case the calculations
were based on nonlinear prebuckling equilibrium states, and additionally in
the case of the two 120° truncated cones, on live normal pressure loading.

Results are presented in the form of charts of snapping load versus
root-mean-square amplitude of angular shell and ring imperfections for two
hypothetical imperfection shapes, -one being proportional to the buckling
mode deflections and the other producing the greatest possible loss of
stability for sufficiently small imperfection amplitudes. The range of im-
perfection amplitudes presented is 0 to 5 milliradians, as the theory is
valid only for small imperfections. The knockdown factors resulting from
an assumed nominal imperfection amplitude of 5 milliradians are:

0.88 (120° sandwich cone), 0.82 (140° sandwich cone)

0.72 (60° spherical dish), 0.66 (0A.65 tension shell)
0.62 (120° ring-stiffened cone), and 0.57 (0A8.33 tension shell)



INTRODUCTION

In Reference 1 the theory is developed and a computer program is
presented for the evaluation of the imperfection sensitivity of unique
bifurcation buckling modes of ring-stiffened shells of revolution. The
method presented there is an application of the imperfection analysis pre-
sented in References 2 and 3, which translates the original Koiter theory
(Refs. 4-6), into the notation of Budiansky and Hutchinson (Refs. 7 and 8)
and includes nonlinear prebuckling states, live loading, and arbitrary im-
perfection shapes. There exist in the literature several previous appli-
cations of Koiter's theory to specific shells (e.g., Refs. 9-11), and in
References 12-14 nonlinear prebuckling states were included in the buckling
and postbuckling analyses. Generally, in previous studies, the end pro-
duct of the analysis has been the second postbuckling coefficient b (or
the initial postbuckling stiffness) of the perfect shell, which, for buckling
modes normalized to have a normal deflection amplitude equal to the shell
thickness, is taken as a measure of the degree of imperfection sensitivity.

The present study makes use of the method presented in Reference 1
to evaluate eight shell configurations previously studied in References 15,
16, and 17. All of these shells have ring stiffeners, which are treated
discretely. In the only previous treatment of ring-stiffeners (Ref. 9),
the ring stiffness was uniformly distributed over the shell. 1In addition
to computing the second postbuckling coefficient for each buckling mode,
the first and second imperfection parameters, & and 3 , are computed for
two imperfection shapes - one proportional to the buckling mode deflections,
and the other producing the maximum value of O (and consequently the greatest
loss of buckling strength) for any given value of the root-mean-square
amplitude of angular shell and ring imperfections. From these results charts
are made of the snapping load versus imperfection amplitude.

In this study possible interactions between two or more buckling
modes of the perfect structure are neglected. Also, as noted in Ref. 2
other terms of the order of the B -terms have been tacitly neglected in the
development of the first—-order imperfection theory. However, the extent to
which nonzero B-values affect the predicted knockdown factors is indicative
of the error in the first-order theory.



SYMBOLS

b second postbuckling coefficient

N circumferential harmonic number

p pressure

WR residual weight available for landed payload

WS total structure plus heatshield weight

o first imperfection parameter

B second imperfection parameter

il buckling load knockdown factor

A load factor

é root-mean~square amplitude of angular shell and ring
imperfections

Subscripts:

c critical value for perfect structure

s critical value for imperfect structure

mode pertaining to the imperfection shape proportiomal to
the mode displacements

Superscripts:

A pertaining to the imperfection shape which maximizes

* evaluated at the bifurcation point



RESULTS

The eight shell configurations treated are defined in detail in
References 15, 16 and 17 and any changes in the details presented there are
noted below. For the designs of Reference 16, only the low temperature
(300°F), low ballistic coefficient (0.32 slug/ftz) capsule designs are con-
sidered. The method of analysis is presented in Reference 1, and only
final results are presented here.

The snapping load Ag 1s defined as the relative maximum attained by
the load factor A (proportional loading is assumed) with respect to de-
flection for equilibrium states of an imperfect structure. In the case of
axisymmetric structures which buckle in a unique harmonic mode, this relative
maximum exists for small imperfections if the postbuckling coefficient b is
negative. Also, in this case the perfect structure exhibits a postbuckling
load drop-off after bifurcation. The parameters O and B depend on the speci-
fic imperfection displacement distribution assumed, and in cases of negative
b determine along with the value of b the severity of the buckling load knock-
down. In this study, two imperfection shapes were considered - one proportional
to the perfect structure buckling mode, and the other yielding, for a given
value of the mean square angular imperfection amplitude £, the maximum
possible value of & , and consequently for sufficiently small imperfections,
the smallest value of Ag.

The basic equation relating the ratio of snapping load R.s of an im-
perfect structure to bifurcation load XC of the corresponding perfect
structure with the root-mean-square angular imperfection amplitude ¢ for
various values of the parameters b, &, and 8 is given as Eq. (3) of Ref-
erence 1 and displayed there as Figure 1. Because of its fundamental im-
portance this relation is reproduced here also as Figure 1. Two observations
pertinent to Figure 1 are noted. First, for B/ a 21, Ag /KC approaches
from_above the horizontal asymptote ( 8 /a -1)/( B/ a ) for large values
of ¢, whereas for B/a < 1, Ag/)x, becomes negative for large E .

This behavior of the curves of Figure 1 for large £ clearly does not re-
present the real situation, and indeed this is consistent with the fact

that the theory upon which this relationship is based is a first-order theory
in 2. Thus the curves shown in Figure 1 are, in reality, asymptotes of the
true” curves for € - 0. Secondly, if based on linear prebuckling theory
neglecting prebuckling rotations, the ratio S/ & would equal unity.

In some cases, the independent treatment of certain higher buckling
modes, i.e., in a harmonic N # N., is inaccurate because of the closeness
of the eigenvalue in the harmonic N with that of the harmonic 2N. When this
occurs, the differential equations for the 2N harmonic component of the
second-order contribution to the postbuckled state are practically singular,
_and their solution is so large as to violate the order of magnitude assumptions



in the analysis., This is particularly evident in the results presented for
the ring-stiffened shells for which inordinately large negative b-values
were calculated as a result of this approximate singularity. In the case
of the 0A.833 tension shell a result attributable to this limitation of the
independent mode analysis is so unrealistic that it is discarded (see p. 8)
and not included in its load knockdown chart. 1In the cases of the ring-
stiffened cones and the OA.65 tension shell, the largest negative b-values
presented may also lead to inaccurate results, however, these results are
included in the knockdown charts presented.

120° Sandwich Cone (Ref. 15)

The base and nose rings used in the present analysis of the sandwich
and ring-stiffened cones of Reference 15 are not included in those discussed
in that reference. They are instead tubular rings with 6.00 in. 0.D. by
0.156 in. thick for the base ring and 2.50 in. O0.D. by 0.125 in. thick for
the nose ring. These edge rings were used for both the 120° sandwich and
ring—-stiffened cones.

In Table I are shown the essential results for the 120° sandwich cone
of Reference 15. These results are based on live uniform pressure and a
nonlinear prebuckling state at p = 6.20 psi.* Values of b, , and 3 presented
in Table I and the following tables are based on buckling modes normalized to
have a normal deflection amplitude of one inch.** Note that for some harmonics,
the lowest two modes were obtained. However, the complete analysis was carried
through only for those modes which could conceivably control buckling of the
imperfect structure.

Using these results and the knockdown relation illustrated in Figure 1,
the critical pressure chart (Fig. 2) was constructed. As shown, the lowest
buckling mode of the perfect structure (N = 7) controls the buckling of the
imperfect structure for imperfection amplirudes less than roughly 0.0018 rad.

* Tt is noted that in the method used to compute the bifurcation buckling
modes (Ref. 18) it is not necessary that the load )\, at which the nonlinear
prebuckling state is computed coincide with the bifurcation load A,. Good
accuracy is obtained if A, is sufficiently close to A, so that the pre-
buckling state at bifurcation is approximated by the superposition of the
nonlinear prebuckling state at Ao and a linear perturbation state about it.
In the postbuckling analysis all necessary prebuckling state variables

(and their derivatives with respect to \) are corrected, to first order

in the difference A, - Ay, to the bifurcation load A..

*%* Note that the quantities o?b and B/a, which determine the snapping
load (Fig. 1), do not depend on the normalization of the buckling mode.



For larger imperfection amplitudes, it is likely that the N = 6 mode would
control.* For sufficiently small values of E the curve labeled max a im-
perfection gives the smallest possible critical load. The spread between
the buckling mode imperfection and the maximum @ imperfection curves is in-
dicative of the effect of different imperfection shapes. The scale shown at
the top of Figure 2 and succeeding figures relates the root-mean-square an-
gular amplitude to the normal deflection amplitude for buckling mode im-
perfections. Thus, for example from Figure 2, an imperfection proportional
to the N = 7 buckling mode with an RMS angular amplitude of one milliradian
has a maximum normal reflection of 0.0175 inch. '

120° Ring-Stiffened Cone (Ref. 15)

In Table II are shown the essential results for the 120° ring-
stiffened cone of Reference 15, From the results shown it is seen that
the effect of live pressure is more significant for the postbuckling
coefficient b than it is for the critical pressure P.- However, as it

does for p , this effect on b diminishes with increasing harmonic number,
Based on the live pressure results for N = 5 and 6 and the dead pressure
results for N = 7, the critical pressure chart for the imperfect structure
(Fig. 3) was constructed,** For the sake of clarity, the curve for the

N = 7 buckling mode imperfection is omitted. It lies wholly above the
corresponding maximum ¢ imperfection curve in much the same manner as for
N = 6 curves. 1In this case, for imperfections of moderate size the much
smaller value of B for the N = 5 buckling mode imperfection overcomes the
larger value of o for the maximum @ imperfection, so that the buckling
mode imperfection results in smaller critical pressures,

It is noted, however, that the computed values of B for this cone
(and the ring-stiffened conical capsule discussed below) may not be as
accurate as the B-values computed for the other structures. For the ring-
stiffened cones the terms in the B-formula[ Eq. (34b) of Ref. 3) which
depend quadratically on prebuckling rotations appear to be dominant
terms, Because of the current program limitation of 100 output points
for shell response variables, the prebuckling rotation, which has a rapid

* Insofar as these and the following results, which neglect interactions
between two or more buckling modes, indicate a nonfundamental mode controlling
the buckling of the imperfect structure, significant mode interactions are
possible.

*% Strictly speaking, live uniform pressure is not crnservative for a shell
with edge rings, and is therefore beyond the scope of the initial post-
buckling theory used (Ref. 2). However, it is probable that relative to a
laboratory test of this shell, the live pressure results are more accurate
than the corresponding dead pressure results.
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variation between rings for the ring-stiffened cones, may not have been
obtained with sufficient accuracy for these terms to be very accurate. ¥
This loss of significance, if indeed it occurred, may be accentuated for
the buckling mode imperfection, since for this imperfection the terms in
question tend to cancel each other out., In order to check the accuracy
of the B-values obtained for the ring-stiffened cones, the analysis for
these shells should be repeated with more output points, with at least
two or three output points between each adjacent ring pair.

As seen from Figure 3, for imperfection amplitudes less than roughly
0.0012 rad the N = 7 harmonic controls the buckling, although the closeness
of the curves indicates that any one of the N = 5, 6, or 7 modes could be
critical depending on the actual imperfection shape. For larger imperfec-
tions, the N = 5 mode appears to be critical.

120° Sandwich Cone (Ref. 16)

In Table III are shown the essential results for the 120° sandwich
conical capsule (0.32 slug/ft~, 300°F) presented in Reference 16. In this
and the following cases the pressure distribution is nonuniform (treated
as dead loading) and the applied load is characterized by the load factor A
which multiplies the expected peak dynamic pressure entry load. Thus A is
the safety factor for buckling failure, and A > 1 corresponds to buckling
loads greater than that expected during Mars entry. The results shown in
Table III are based on a nonlinear prebuckling state at A = 2.48, The
corresponding snapping loads for imperfect shells are shown in Figure 4,
As shown, only two imperfection-sensitive modes, N = 5 and 4 appear to
play a role. It should be noted that in this and the following cases,
the N = 2 mode could be eliminated from consideration simply by increasing
the base ring stiffness,

120° Ring-Stiffened Cone (Ref, 16)

In Table IV are shown tBe essgntial results for the 120° ring-stiffened
conical capsule (0.32 slug/ft”, 300 F) presented in Reference 1l6. These
results are based on a nonlinear prebuckling state at X = 2,16, 1In
Figure 5 are shown the corresponding snapping loads. These results are
similar to the results for the ring-stiffened cone of Reference 15 (Fig. 3)
in that for imperfection amplitudes of moderate size the buckling mode
deflection appears to be the most detrimental imperfection shape.

* Only one output point between each adjacent ring pair was used.



OA.833 Tension Shell (Ref. 16)

In Table V are shown_the essential results for the OA.833 tension
shell capsule (0.32 slug/ft“, 300°F) presented in Reference 16. These re-
sults are based on a nonlinear prebuckling state at A= 2.25. It should be
noted that this design (and the OA.65 tension shell design discussed below)
has 90 stringers uniformly spaced around the shell circumference.® Since
in the analysis the stringer stiffness is circumferentially smeared out,
the results tend to lose significance for, say, N > 20. This is particularly
true for the b-calculation, for which the harmonic 2N plays a role.

The extremely large negative b-value obtained for the N = 13 mode
is spurious, resulting from the fact that the value of A_for N = 26 is
very close to the value 2.48 for N = 13, as may be inferred from Table V.
As a consequence the differential equations for the N = 26 harmonic com-
ponent of the second-order contribution to the postbuckled state are
practically singular, and their solution is so large as to violate the
order of magnitude assumptions inherent in the analysis. A determination
of the buckling load knockdown associated with the N = 13 mode therefore
requires consideration of the interaction of this mode with the N = 26 mode,

and such an analysis is beyond the scope of this study.

The snapping loads corresponding to the results of Table V are shown
in Figure 6. The buckling mode imperfection curves are omitted for the sake
of clarity. These lie wholly above the corresponding curves shown for the
maximum & imperfections. For the reasons discussed above, no results are
shown for the N = 13 mode. However, even without consideration of this
mode, the results show a serious loss of stability due to imperfections.
Consequently, this configuration probably should be redesigned in order to
sustain the anticipated loads.

140° sandwich Cone (Ref. 17)

In Table VI are shown the essential results for the 140° sandwich
conical capsule presented in Reference 17. These results are based on a
nonlinear prebuckling state at A = 2,00, The corresponding snapping loads
are shown in Figure 7, 1In this case, the critical buckling mode (N = 5)
for the perfect structure has a stable postbuckling behavior. However,
for imperfection amplitudes greater than roughly 0.001 rad, lower critical
loads associated with the unstable N = 4 mode are possible.

* The stringers suppress the rapid variation of the prebuckling rotation
between rings (cf. Figs. 17 and 21 of Ref. 16), thereby eliminating the
possibility of a numerical loss of accuracy in the B -calculation noted
earlier for the ring-stiffened cones.



60° Sandwich Spherical Dish (Ref. 17)

In Table VII are shown the essential results for the 60° sandwich
spherical capsule presented in Reference 17, These results are based on
a nonlinear prebuckling state at A = 2,10, The corresponding snapping
loads are shown in Figure 8. As shown, it is possible for either the
N =7, 6 or 5 modes to control the buckling depending on the size and
shape of the imperfectionm.

OA.65 Tension Shell (Ref. 17)

In Table VIII are shown the essential results for the OA.65 tension
shell capsule presented in Reference 17. These results are based on a
nonlinear prebuckling state at A = 2,50, The corresponding snapping loads
are shown in Figure 9. As shown, for all but very small imperfections,
the N = 11 mode would probably control. The N = 2 mode, which is just
slightly sensitive to imperfections can be suppressed by increasing the
base ring stiffness,

Entry Capsule Configuration Comparison

With the results presented in Figs., 2 - 9, Table III of Reference 17
can be enlarged to include the buckling safety factors for the six entry
capsule configurations with geometric imperfections, as shown in Table IX.

In this table, 1) is the knockdown factor by which the safety factor is
reduced by the assumed imperfection. It is seen that the three sandwich

capsules are less sensitive to geometric imperfections than are the three
ring- stiffened capsules. This result is in apparent agreement with the
results of previous studies (Refs. 6 and 13) which show that, in general,
most methods for increasing the buckling load without an increase in
structural weight tend to increase the imperfection-sensitivity as well.

_ If one insists on a 50% safety margin with the imperfection amplitude
€ = 0.005 rad, all but two of these configurations would require redesign,
the two suitable designs being the 120° and 140° sandwich cones. 1In order
to make the comparison between these two configurations more meaningful,

one can use Figure 28 of Reference 19 to adjust the structural weight of

the 120° sandwich cone to a value compatible with the buckling load of

the 140° sandwich cone. Assuming that the knockdown factor of 0.79 remains
unchanged, one can compute a structural weight of approximately 561 1b for
an optimum 120° sandwich come which buckles at Ag = 1.58 for E’= 0.005 rad.
Although this is 7 1b less than the structural weight required for the 140°
sandwich cone, the corresponding residual weight (WR) is still only 3839 1b,
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543 1b short of that attainable with the 140° sandwich cone. Thus, structur-
ally, the 120° and 140° sandwich cones appear to be on a par, but the higher
drag coefficient of the 140° cone makes this configuration the more favorable
design. On the other hand, the structural weight of the 120° ring-stiffened
cone adjusted to Ag = 1.58 for ¢ = 0.005 rad is approximately 600 1b, re-
sulting in a residual weight of 3800 1b, 39 1b less than that for the 120°
sandwich cone. The effect of imperfections is therefore seen to lower the
ballistic coefficient below which ring-stiffened construction is superior

to sandwich construction.

CONCLUDING REMARKS

Critical load charts of eight geometrically imperfect shell configu-
rations, six of which have previously been optimized for consideration as
Mars entry capsules, have been presented. In general, the ring-stiffened
designs are more sensitive to small geometric imperfections than are the
sandwich designs. Of the candidate Mars capsule designs studied, only two,
the 120° and 140° sandwich cones, retain at least a 50 percent margin of
safety at a root-mean-square angular imperfection amplitude of 0.005 rad.
Of these two, the 140° sandwich cone is favored because of its higher drag
coefficient and, hence, residual weight available for landed payload.

The second imperfection parameter B apparently plays an important
role in predicting the buckling loads of ring-stiffened shells at reason-
able values of the imperfection amplitude. In some cases it can cause an
imperfection shape proportional to the buckling mode displacements to be
more detrimental than the imperfection shape with maximizes the first im-
perfection parameter & . However, the theory upon which 8 is based implicitly
neglects other terms of the same order. Therefore, the asymptotic imperfection
analysis should be systematically reconsidered to determine to what extent the
snapping load expression including B should be altered.

A deficiency in the analysis upon which the foregoing results are
based is the independent treatment of each of the buckling modes of the
perfect structure. 1In those cases where nonfundamental modes appear to
produce the critical load of the imperfect structure, it is likely that the
interaction between two or more modes is not mnegligible. TFor such problems,
which, from the results presented, appear to be common for practical structures,
additional analysis is necessary.
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TABLE I
120° SANDWICH CONE (Ref. 15)

N Pe (psi) b_ ji & IB\ ”Ol,mode Bmode
2 9.95 | -5.50x107° [128.6 48.5
3 |~26
4 | 13.75 0.030
5 8.78 1.124
6 6.99 | -0.218 30.2 | 38.9 20.7 19.8
7 6.63 | -0.079 25.6 | 30.3 18.8 18.3
51.8
8 6.90 0.011
9 7.49 0.088
29.8
11 9.20 0.231
26.25
b

13
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TABLE 1T
120o RING STIFFENED CONE (REF. 15)
=
VAV YAVE
'bw bq; (4 ’bgl (]
p@ o ®[p@| @ | o | @ jole | N |Q [/ 5/5/8 /8§
N| e c __i,/c . b b b & & & A § /8 Jy &
(psi)|(psi) |(psi) o ®
2 9.49 3.02x107>
3 15.6 1.18
418.69| 8.63| 8.84| -0.034 | -0.019|-0.030 34,4135.1(33.4 16.5]116.6116.3
5/5.21) 5.18 -39.2 -16.8 24.0|24.2 53.9153.6]15.0]15.1 12.4]12.4
6]4.231 4.22 -0.59% | -0.586 19.2119.3 31.6131.6[13.9113.9 13.2]113.2
14.03
714.111 4.11 -0.465 17.2 25.6 13.1 12.8
10.36
84.30f 4.30 -0.357 16.7 12.8
9.34
9
9.59
10]5.24 0.030
12(6.72 0.424
aBased on dead pressure and a nonlinear prebuckling state at p = 4.20 psi.
bBased on live pressure and a nonlinear prebuckling state at p = 4.00 psi.
CBased on live pressure and a nonlinear prebuckling state at p = 8.00 psi.




TABLE III
120° SANDWICH CONE (Ref. 16)2

_J{7 Xc b « B “mode Bmode
2 | 2.18 3.09x10"°
3 4.04
4 2.82 -0.189 52.3 63.9 33.0 32.3
5 2.44 -0.0452 40.0 | 44.0 28.9 28.6
6 2.54 -0.0114 33.3 35.0 26.0 25.9
8 3.18
10 | 4.11

TABLE IV
120° RING-STIFFENED CONE (Ref. 16)

N, xc b « P “node Bmode
2 2.19 -1.93x107° | 212.6 581. 61.6 58.5
3 3.52 -0.17 65.8 19.7
4 2.28 -3.17 41.0 258. 18.1 13.3
5 2.08 -0.32 29.8 179. 15.4 14.1
6 2.17 0.06
7 2.22 0.45
9 2.58 1.11
11 3.47 2.04

4The stability safety factors shown in this and the following tables show
slight deviations from those reported in References 14 and 17 due pri-
marily to the more precise heatshield weights (and hence inertial loads)
used in the present prebuckling state calculations.
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16

0A.833 TENSION SHELL (Ref. 16)

TABLE V

N A b & 8 o B
c ] _ o quf, N gn_p_de

2 2.16 -2.22x1073 210.7 272. 46.6 43.6
3 4.77

4 5.76

6 5.51

8 4.16

10 3.14 1.4

12 2.63 7.2

13 2.48 -295, (3 25.7 32.4 11.8 10.3
14 2.38 -6.74 23.6 28.7 11.5 10.2
15 2.32 -2.65 21.8 25.6 11.1 10.0
16 2.28 -0.969 20.3 23.1 10.9 9.94
17 2.262 0.0018

18 2.263 0.656
20 2.30 1.45
24 2.44

TABLE VI i ]
140° SANDWICH CONE (Ref. 17)

N >\c b 7 & B _ fymode | _B_modew
2 2.06 -1.23x1073 163.1 259. 61.8 56.0
3 3.40

4 2.27 -0.133 73.6 122. 37.9 35.7
5 1.93 0.026

6 1.98 0.074

8 2.46

10 3.17 B

®This value is spurious due to the closeness of Xc for N=26
to 2.48 (cf discussion on Page 8).




TABLE VII

60° SANDWICH SPHERICAL DISH (Ref. 17)

A
L_Ei_ﬁ-,__ xc B ‘”P_ & B “node mode
2 2.08 3.26x107%
3 4.35
4 3.13
5 2.36 -0.576 45.0 64 .4 34.0 29.3
6 2.09 -0.168 36.2 44 .4 29.4 25.8
7 2.06 -0.121 31.0 35.1 26.2 23.8
8 2.15 -0.092 27.5 29.9 23.9 22.3
9 2,33
11 2.84
TABLE VIII
0A .65 TENSION SHELL (Ref. 17)
A A
N ) ) xc b o B “mode Bmode
2 2.22 -1.23x10_4 227.0 392. 48.5 41.4
3 3.34
4 4.18
6 4.07
9 3.05
10 2.84 6.81
11 2.71 -5.08 24.5 29.6 13.2 12.5
3.97
12 2.62 -1.04 22.7 26.5 12.8 12.2
13 2,58 -0.115 21.1 24.0 12.4 11.9
14 2.561 0.38
3.79
15 2.565 0.70
17 2,61 1.05-
3.94
18 2.65
21 2.77
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TABLE IX

BUCKLING SAFETY FACTORS FOR IMPERFECT CAPSULE
CONFICURATIONS FOR MARS ENTRY?

T - == Adjusted
W Wy £ = 0.,0025 rad € = 0.005 rad WeightsC
Configuration (1b) (1b) >Ls 7 Mg m WS WR
120° Sandwich coneP 585 | 3815 | 2.12 0.97 1.92 0.88 561 ]3839
(0.87) (0.79)
140° Sandwich cone 568 | 4382 |[1.75 0.91 1.58 0.82
60° Sandwich spherical 515 | 4065 | 1.72 0.83 1.48 0.72
dish
0A.65 Tension shellP 597 | 4828 |1.76 | 0.79 1.46 | 0,66
(0.69) (0.57)
120° Ring-stiffened 559 | 3841 | 1.60 0.77 1.29 0.62 600 |3800
cone
\
0A.833 Tension shellb i 605 | 4595 |1.51 } 0.70 1.24 0.57
| 1(0.67) (0.55)
%Based on orbit entry with a ballistic coefficient of 0,32 slug/ftz.

bFor these shells, the N=2 mode is critical for the perfect shell, and consequently the
Tl-factors are based on the N=2 buckling loads at £=0.,
the N=2 modes are given in parentheses.

“Adjust to Ag = 1.58 for € = 0.005 rad using results of Reference 19,

The knockdown factors neglecting
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